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We consider the critical behavior of the susceptibility of the self-avoiding walk 
on the graph T x Z, where T is a Bethe lattice with degree k and Z is the one 
dimensional lattice. By directly estimating the two-point function using a 
method of Grimmett and Newman, we show that the bubble condition is 
satisfied when k>2, and therefore the critical exponent associated with the 
susceptibility equals 1. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF RESULT 

The mean-field critical behavior  for the self-avoiding walk on the d-dimen-  
sional hypercubic  latt ice Z d has been established by Hara  and Slade 15~ for 
d~> 5. The method  that  they used is the lace expansion,  which was intro-  
duced and used by Brydges and Spencer ~2~ to prove mean-field critical 
behavior  for the weakly self-avoiding walk in more than four dimensions.  
In this note, we will consider  the self-avoiding walk on branching planes. 
Models  such as percolat ion,  r andom cluster models  as well as Ising spin 
systems on branching  planes have been studied and found to exhibit  inter- 
esting mul t ip le  phase transit ions.  13'12~ The lace expansion has proved to be 
a very successful me thod  in establishing mean-field critical behavior  for 
stochastic geometr ic  models  such as the self-avoiding walk, lattice trees and 
animals,  and percola t ion on Z d when d is above  the corresponding upper  
critical dimensiotas. ~2`s-s'~31 But the lace expansion cannot  be directly used 
on the branching  planes,  since some est imat ions  in the expansion are based 
on the Four i e r  t ransform (and its inverse t ransform),  and the usual Four ie r  
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transform cannot be directly used on the branching planes. In this note 
we will estimate the two-point function using a method of Grimmett  and 
Newman TM and then prove that the bubble condition is satisfied. To make 
our statement more precise, we first describe the lattice and the model. The 
lattice of branching planes in question is the direct product T x Z, where T 
is a Bethe lattice with degree k (i.e., each site of T has exactly k + 1 
neighbors, where k>~2), and Z =  { . . . , - 1 ,  0, 1 , - - .  } is the one-dimen- 
sional lattice. The name branching planes comes from the fact that T x Z 
consists of branching planes, each of them a direct product of an infinite 
path of T and Z. (Each horizontal layer of T x Z is a Bethe lattice.) A site 
of T x Z is denoted by (t, zh where the first component t is a site of T and 
the second component z is a site of Z. The distance between two sites t) 
and t2 of T is denoted by [ t~- t2[  and is defined to be the number of 
steps from t~ to t2 along the unique path between them. The distance 
between any two sites (tl ,  z~) and (t 2, z2) of T x Z is then defined to be 
[(tl, z ] ) - ( t  2, z2) [ - [ g - t 2 [  + Iz l -z21 ,  where the second term in the sum 
is the absolute value of z ~ - z 2 .  Let tr be a distinguished site of T that we 
will call the origin of T; then the origin of T x Z will be denoted by (a, 0). 
The distance between (t, z) and (a, 0) will be simply written as [(t, z)[. 

An n-step self-avoiding walk co on T x Z is an ordered set 09= 
(co(0), co(l) ..... co(n)) in T x Z ,  with each c o ( i ) ~ T x  Z, Ico(i)-co(i+ 1)1 = 1, 
and co(i)#co(j)  for i # j .  We write Icol=n to denote the length of 09. 
Unless otherwise indicated, we take co(0)= (a, 0). We denote by c, the 
number of n-step self-avoiding walks, and for (t, z ) ~ T x  Z we denote by 
c,,(t, z) the number of n-step self-avoiding walks for which co(n) --- (t, z). By 
convention, Co = 1 and Co(t, z)=~,._-~,c,.o). The existence of the connective 
constant 

/t = lim c~,/'' ( 1 ) 

can be shown using the subadditivity argument 14" ~o. l~) 
Given a site (t, z) in T x Z, the two-point function [between (t, z) and 

the origin (a, 0)] is the generating function for the sequence c,,(t, z), i.e., 

G;.(t, z) = /..,~ c,,(t, z) 2 " =  ~ 2 I~ (2) 
n = 0  ~o : ( a ,0 )  ~ ( t , : )  

The sum over co is the sum over all self-avoiding walks, of arbitrary length 
Icol, which begin at the origin (a, 0) and end at (t, z). The susceptibility is 
then defined by 

X(2)= ~ G,.(t, z) (3) 
( t , z ) ~ T x Z  
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which can be written as the generating function of the sequence c, ,  i.e., 

Z(2) = ~ c,,2"= ~ 2 t'~ (4) 
n=O O) 

where the sum over o~ is the sum over all self-avoiding walks, of  arbi t rary 
length I(ol, which begin at the origin. The power  series in (4) has radius of  
convergence 

2 , .=(  lim c),/")-l= l /#  (5) 
t l ~  0 2  

We will refer to 2,. as the critical point. 
It is expected that  

c,, ~ / t "n  ~'-I as n ~ o o  (6) 

X(2) ~ ( 2 c -  2)-~' as 2]'2,. (7) 

where y is called the critical exponent, and the relation f ( x ) ~ - g ( x )  as 
x ~ xo means that  there are positive constants  c l and c2 such that  

el g(x) <~ f ( x )  <~ c2 g(x) (8) 

uniformly for x near its limiting value Xo. 
We define the bubble diagram as 

B(2) = ~ G).(t, z)  2 (9) 
( t , z ) ~ T x Z  

The bubble condition states that  the bubble d iagram is finite at the critical 
point, i.e., 

B(2,.) < o~ (10) 

In this note, we will prove that  the power  law (7) is valid with 7 = 1 
when the degree k of  T is greater than 2. In particular we will prove that  
the bubble condition (10) is satisfied when k > 2. The bubble condition has 
been shown to imply (7) by Bovier et al. ~l) (see also Section 1.5 of  ref. 11). 
We believe that  (7) holds for k/> 2, a l though at the present our p roof  does 
not work  for the k = 2 case. This is because we do not have a good upper  
bound for ,l,. when k =2 .  Currently we have no p roof  of  power  law 
behavior  (6) for the microcanonical  (as opposed to canonical) ensemble 
quanti ty c,.  
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Theorem. For self-avoiding walk on T x Z, if 

2{1 + 2 +  [22(1 +2)31/2}/(1 - - 2 ) <  l /v /k  (11) 

then the bubble diagram is finite, i.e., 

B(2) < oo (12) 

The theorem will be proved in the next section. Its consequence is 
stated and proved as follows. 

Coro l l a ry .  For self-avoiding walk on T x Z with k >  2, we have 
that 

z(2) ~_ ( 2 c - 2 )  -y as 2T2c (13) 

with 7 = 1, where the relation "~-" is in the same sense as in (8). 

Proof of  the Corollary. It is not hard to see that 2c~<l / (k+l ) .  To 
see this, simply count the number of walks in which each step is either in 
the positive coordinate direction of Z if it is a "vertical" step [a  vertical 
step is a step from (t, zl) to (t, z2) with ] z l - z2 ]  = 1], or in the direction 
away from the origin a of T if it is a "horizontal" step [ a horizontal step 
is one from (tl,  z) to (t2, Z) with I t1 -  t2] = 1]. Such walks are necessarily 
self-avoiding, so 

c,>~(k+2)(k+ 1) "-1 

which implies that 2~= lift <~ 1/(k + 1). Define f (2)  to be the function on 
the left-hand side of (11); then f (2)  is an increasing function and hence 
f(2c) <~f(1/(k+ 1)):. It is not difficult to check by direct calculation that 
f ( 1 / ( k +  1))< 1/x/k when k>~4. For k = 3 ,  2c is bounded from above by 
2c(Z3), the critical point of self-avoiding walk on Z 3. This is because Z 3 
can be regarded as a subgraph embedded in T x Z with k = 3. On the other 
hand, 2,.(2 3) < 0.21872 from ref. 9. Substituting the value 0.21872 into f ( .  ) 
reveals that f(0.21872) < l/x/~. So 

f(2~) < 1/x/~ when k t> 3 

Therefore by the theorem, we have that B(2c)< 0% which implies the 
corollary by refs. 1 and 11. | 

In the proof of the corollary, we have actually shown that the bubble 
diagram is finite not just at 2c, but a little past 2~. This kind of 
phenomenon does not occur for the self-avoiding walk on the hypercubic 
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lattice Z d. The critical two-point function o n  Z d decays like Ix]-td-2) for 
d > 4  (so it is square summable for d>4 ) ;  however, as we will show in the 
next section, the critical two-point function on T x Z (when k > 2) decays 
exponentially (.at least along the T component). 

2. P R O O F  OF THE T H E O R E M  

We need to show that B(2) is finite when (11) is satisfied. We write 
B(2) as follows: 

B(2) = }-" G).(t, z) 2 
( t , z ) ~ T x Z  )2 

= Z 21'~ 
t ~ T  z ~:  (~r, (t,z) 

Z Z 2'~ 
t E T  z r  ~ ( t , z )  

The main task of our proof is to show that 

(14) 

~ 2~,o~ < c(f(2))r. (15) 
z ~ Z  oJ:(a,O)~(t ,z)  

where c is a constant, f (2)  is the function on the left-hand side of (11), and 
(recall that) Itl is the distance from t to the origin tr ofT.  The proof of(15) 
will begin in the next paragraph. From (14) and (15), we have that 

B(2)~<c 2 ~ f (2)  21'1 
t ~ T  

< O O  

when f ( 2 ) <  l/v/k, i.e., when (11) is satisfied. 
We now turn to the proof of (15). We will follow the idea in the proof 

of Proposition 1 of ref. 3, although the argument in ref. 3 is for percolation. 
A self-avoiding walk co from (a, 0) to (t, z) can be thought of proceeding 
as follows. Starting at (So, 0 ) =  (tr, 0), it proceeds along vertical steps to 
some (So, Yo), then along (one) horizontal step to (s~, Yo) (where s] is a site 
in T adjacent to So), then along vertical steps to some (s,, Yl), and so on 
until it arrives at some (s , ,  y, ,_ ~) (where s,, = t), and finally along vertical 
steps to (s,, y,,) = (t, z). Denote ~= (So, s, ,..., s,). We will think of ~ as an 

822/8 I/3-4-11 
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n-step simple walk in T from r to t (a simple walk is a walk with the self- 
avoiding condition removed).  Notice that  

Io~l = n +  lyol + l Y l - Y o l  + "'" + lY , , -Y , - I  I 
So 

n = l t l  .r Y O = - - ' ~  Y n = - - ~  

= ~, ~, 2"A ' '+ l  (16) 
n = l t l  .r 

where = ~, ,  = = ( 1 + 2)/( 1 - 2), and the sum over f is the sum over 
all simple walks on T, of length n, which begin at a and end at t. 

We will improve the estimate in (16) as follows. For  the aforesaid 
simple walk Y of T, let R(Y) be the number  of  immediate  reversals of  Y. If 
the step from s; to s;+l  is an immediate  reversal (i.e., S;_l =s ;+~) ,  then 
y; :# y;_  ~ since co is self-avoiding, so that  in (16), the A which corresponds 
to sum over Yi may  be replaced by A - 1. It follows that  

LHSof (15 )~<  ~ ~ )t"(A-I)Rt~ A "+l-R~'~ 
. = l t l  s 

=A ~ (2A) 'Z (1 - -A - ' )  RI~ (17) 
n = It l  .r 

Next we define each step of Y to be either an outstep or hTstep (relative 
to the site t) according to the following rule. A step from s; to s;+ ~ where 
s;:~ t is an outstep if and only if Is;+, - tl = I s ; -  t[ + 1, and indicate an 
(arbi trary)  step from t to one of its neighbors as an instep and the other 
k steps from t as outsteps. In this manner ,  there are exactly k possible out- 
steps and only one instep from each site of  T. Among  the n steps in Y, there 
are at most  (n - I t l ) / 2  outsteps. This is because it takes Itl insteps to reach 
t from a, and among  the remaining n -  Itl steps at most  half  are outsteps. 
We define J ; =  1 if the step from si to s;+~ is an instep and J~= 2 other-  
wise. Set T ( J ) =  # {i:J;_ l = 2 ,  J ; =  1} be the number  of  times an outstep 
is followed by an instep. Notice that  T(J)<~R(Y). Each sequence j r=  
(Jo, J~,..., J,) of l 's and 2's corresponds to at most  k ~  1,1:- possible simple 
walks Y, since there are at most  ( n -  Itl )/2 outsteps for each Y and there are 
k possible ways to take each outstep. So from (17) 

L H S o f ( 1 5 ) ~ < A  ~ (2A)'~" ( I - -A-I )  n:) 
n : I t l  ~" 

<<.A ~ k~ ;q:) (18) 
n = I t l  J 
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However, 

( 1 l ) " - I  (11) ~ ( 1 - A - t ) ~ Y ~ = ( 1 , 1 )  I _ A _  t 1 (19) 
y 

which behaves for large n in the manner  of  [I + (1 - -A - l ) l / 2 ]  " - t  where 
1 + ( I -  A-~)J/2 is the larger eigenvalue of the matrix on the right side of 
(19). Substituting (19) into (18), we have that 

LHS of(15)  <~clA ~ U"-Im/2(2A)"[1 + ( 1  - A - I ) I / 2 ]  ' ' -1  
n=ltl 

= c [ f ( 2 ) ]  I'1 

where 

and 

fO.) =2A[1 +(1 - A - ' )  'p-] =4{1 +,~+ [2,t(1 +,~)]'/2}/(1 -)~) 

c -  1 + ( 1  Z ) - l ) l / 2 , , = o  

is a finite constant  when f ( 2 )  < 1/v/k. This completes the proof  o f ( 1 5 ) a n d  
hence the proof  of  the theorem. | 
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